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The term “artificial
Intelligence” [Al] was first
Introduced by John McCarthy
at the seminal 1956
Dartmouth Conference, where
the vision of making
“machines use language, form
abstractions and concepts,
solve kinds of problems now
reserved for humans, and
Improve themselves".
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Making Sense of Modern

Medicine: Al as a Critical Tool
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FIGURE 1 | Growth in facts affecting provider decisions versus human cognitive capacity.
SOURCE: Adapted from National Academy of Medicine. 2022. Artificial Intelligence in Health Care: The Hope, the
Hype, the Promise, the Peril. Washington, DC: The National Academies Press. https://doi.org/10.17226/27111.



Al as a Tool for Providers and
Researchers, Not a Replacement

Al to replace human Human-Al Collaborative Al
collaboration adoption
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FIGURE 2 | Al adoption to enable doctor-Al
collaboration and considerations. SOURCE: Sezgin E.
Artificial intelligence in healthcare: Complementing, not replacing,
doctors and healthcare providers. DIGITAL HEALTH. 2023;9.
doi:10.1177/20552076231186520
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FIGURE 3 | A summary of the domains of artificial

intelligence. SOURCE: National Academy of Medicine.
2025. An Atrtificial Intelligence Code of Conduct for Health and
Medicine: Essential Guidance for Aligned Action. Washington,
DC: The National Academies Press.
https://doi.org/10.17226/29087 .



Overview

Defining Al/ML in Healthcare

Key Findings from Literature Review:
Ethical and Social Challenges

Problems and Solutions

Key Takeaways




Artificial Intelligence (Al)

Machine Learning (ML)

Deep Learning
Learning in artificial neural
networks (ANNs) with
“hidden” layers”
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FIGURE 2 | High-level categories of Al. Adapted from: National Academy of Medicine. 2025. An Artificial Intelligence Code of
Conduct for Health and Medicine: Essential Guidance for Aligned Action. Washington, DC: The National Academies Press.
https://doi.org/10.17226/29087.
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FIGURE 2 | High-level categories of Al. Adapted from: National Academy of Medicine. 2025. An Artificial Intelligence Code of
Conduct for Health and Medicine: Essential Guidance for Aligned Action. Washington, DC: The National Academies Press.
https://doi.org/10.17226/29087.
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Artificial Neural
Network [ANN]
Architecture
and “Deep
Learning"

/RN

Input Layer
Receives raw
data or
features.

ANN Schematic

Hidden Layer(s)
Process the data through
weighted connections.

A4

Output Layer
Produces the
final prediction or
classification.
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Al and ML applications are
transforming healthcare
delivery, diagnostics, and
research_out witnout oroper oversight, risks
inforcing D1AS and inequity, and

potentially, workforce
d iSpIacement, among other challenges.



Bioethics
for Al

62

Beneficence
Non-maleficence



Bioethics

Do no harm and promote wellbeing.
Use accurate and representative training datasets.



Bioethics
INFORMED
for Al CONSENT

Autonomy

Respect patient choice.

Be transparent about Al use.



Bioethics

for Al
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OF BENEFITS AND RISKS

Justice ‘I» #0. ] 9‘

Fair distribution of benefits and risks.

Ensure equitable access and fair burden.




Bioethics

for Al .
HARM
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Avoid harm.

Non-maleficence

Acknowledge limitations and correct errors.
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FIGURE S-1 | Advancing to the
Quintuple Aim.

National Academy of Medicine.
2022. Artificial Intelligence in
Health Care: The Hope, the Hype,
the Promise, the Peril.
Washington, DC: The National
Academies Press.
https://doi.org/10.17226/27111.



. : 1. Systematic 2. Sources of Al
KEY FII‘IEIII‘IgS from Disadvantage Bias

Literature Review: Dataimbalance,

Flawed proxies and lack

Ethlcal- and SUE|a|. of representation can

algorithmic assumptions,
and real-world deployment

C h a I.I.E n g s worsen inequities as Al S S,

use expands.

3. Mitigation 4. Critical Gaps
Strategies

Few studies explicitly
address racial bias or
equity concerns, and
less examine
environmental impacts
of Al use in healthcare.

Prioritize diverse data,
transparent models, clinician
or expert insights, patient
input, and bioethical
oversight.
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Fig. 1. Number of chronic illnesses versus algorithm-predicted risk, replaced with less healthy Blacks below the threshold, until the marginal patient
by race. (A) Mean number of chronic conditions by race, plotted against is equally healthy). The x symbols show risk percentiles by race; circles
algorithm risk score. (B) Fraction of Black patients at or above a given risk show risk deciles with 95% confidence intervals clustered by patient. The
score for the original algorithm (“original”) and for a simulated scenario dashed vertical lines show the auto-identification threshold (the black
that removes algorithmic bias (“simulated”: at each threshold of risk, defined line, which denotes the 97th percentile) and the screening threshold (the gray
at a given percentile on the x axis, healthier Whites above the threshold are line, which denotes the 55th percentile).

Obermeyer, Ziad, et al. "Dissecting racial bias in an algorithm used to
manage the health of populations." Science 366.6464 (2019): 447-453.
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Figure 4: Diagram shows top 10 actions to improve the sustainability
of artificial intelligence (Al) in radiology, with a focus on decreasing
greenhouse gas (GHG) emissions and using Al tools to optimize
image acquisition and processing.

DECREASE AI-RELATED GHG EMISSIONS

l Use energy efficient configuration
@ for Al models

2 — Develop calculators for radiology Al
ggﬁ specific GHG emission estimates
oo

; Encourage collaboration to
decrease redundancy and improve
external validity

Optimize data compression to
minimize storage requirements

Partner with vendors that prioritize
renewable energy sources

Develop Al tools to decrease energy
waste during idle scanner time

6 Implement Al tools to decrease scan
times including de-noising of
accelerated images

support tools to reduce low-value
imaging

8 }@‘}4 Build Al-powered clinical decision

Use Al tools to minimize the need for
contrast administration

Optimize patient schedules using Al
to decrease travel-related emissions




Closing Thoughts

' ?
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PROBLEM SOLUTION

) . ~ Train models on diverse, balanced

1. Bias and Representation datasets and audit for bias.

2 Historical Mistrust — Engage communities apd ensure
transparent data practices.

3. Environmental Challenges ~ Use sustainable systems and
enforce clear regulations.

4. Relationship Dynamics — Design Al with clinical input and
user- centered workflows.
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Thank You!

Contact treid@thecobbinstitute.orq for feedback or questions.
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